What is a thermocouple sensor and how does a thermocouple work?
Two of the most common sensor technologies in temperature measurement devices are resistance temperature detectors (RTDs) and thermocouples (TCs). The technology behind them is different, and each has its own benefits that drive the choice. In a thermocouple sensor, two different metals are joined together at one end. At this junction, changes in the temperature induce a voltage / electromotive force that is measured. TCs are not measuring an absolute temperature, but the temperature difference between the measuring point (T1) and a reference point (Tref).
Wide temperature range from -270°C (454°F) to +1820°C (3308°F)
Fast response time, suitable for dynamic temperature measurements
High vibration resistance
Lower cost compared to RTDs
Rugged and durable, especially useful in harsh environments
Thermocouple types The Seebeck effect, which is made use of for TCs, states that a voltage is generated when two dissimilar metals are joined together. The voltage generated can then be measured and converted into temperature readings, using a calibration curve or table. There are different types of thermocouples, based on different wire pairs and measuring ranges. Each type of TC has a unique relationship between the voltage generated and the temperature. The type can be identified by an assigned letter, e.g. TC type K, type J or type T.
RTD vs. TC – a comparison Their main difference is the temperature range, as an RTD can be used in moderate temperatures ranging from -200°C (300°F) to +850°C (1562°F). The Thermocouple sensor can measure from -270°C (454°F) to +1820°C (3308°F). In general, the choice between a TC and an RTD thermometer depends on the specific requirements of the application.
What are RTDs used for? If you need higher accuracy or are measuring lower temperatures, an RTD may be the right choice. They have a slower response time than thermocouples, but are more accurate over a wider temperature range.
When to use a TC sensor? If you need to measure high temperatures, have a limited budget, or need a fast-responding thermometer, a thermocouple may be the perfect choice. Another advantage of TCs is that they can withstand harsher environments (corrosive material, vibration etc.).
Endress+Hauser has developed a unique sensor called iTHERM ProfileSens for high temperatures, pressures and aggressive media, consisting of a robust double metal sheathed MI cable and temperature profiling with up to four TCs in one cable.
Max. process pressure (static)at 20 °C: 1 bar (15 psi)
Operating temperature rangeType K: -40 °C ...1.100 °C (-40 °F ...2.012 °F) Type J: -40 °C ...750 °C (-40 °F ...1.382 °F) Type N: -40 °C ...1.150 °C (-40 °F ...2102 °F) Type S: 0 °C ...1.400 °C (32 °F ...2.552 °F)
Max. immersion length on requestup to 4.525,00 mm (178,15'')
AccuracyClass AA acc. to IEC 60751 Class A acc. to IEC 60751 Class B acc. to IEC 60751 Class special or standard acc. to ASTM E230 Class 1 or 2 acc. to IEC 60584-2
Response timedepending on configuration
Max. process pressure (static)depending on the configuration up to 500 bar
Operating temperature rangePT100 TF iTHERM StrongSens: -50 °C ...500 °C (-58 °F ...932 °F) PT100 TF iTHERM QuickSens: -50 °C …200 °C (-58 °F …392 °F) PT100 WW: -200 °C ...600 °C (-328 °F ...1.112 °F) PT100 TF: -50 °C ...400 °C (-58 °F ...752 °F) Typ K: max. 1.100 °C (max. 2.012 °F) Typ J: max. 800 °C (max. 1.472 °F) Typ N: max. 1.100 °C (max. 2.012 °F)
Max. immersion length on requestup to 1.500,0 mm (59,06'')
A highly reliable multipoint temperature cable probe for oil & gas and petrochemical applications designed to reduce maintenance intervals and the risk of untimely shutdowns due to sensor failure.